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CONSISTENCY OF TESTS IN NONCOMMUTATIVE STATISTICS

BY

ARTUR BARTOSZEWICZ (L6p2) R

Abstract. The paper investigates moncommutative sequential
tests. There are defined consistency and uniform consistency of such..
tests; -and then sufficient and necessary conditions for the test to be
consistent or uniformly consistent are given.

Holevo in [2] has introduced the notion of noncommutative test as a
positive operator X between 0 and 1.

The aim of this paper is to give conditions of consistency and umform
consistency for noncommutative sequential tests. :

Throughout the paper let o/ be a W*-algebra, {#;,i=1,2,...} — a

sequence of W*-subalgebras of .o/ such that &/, c o/, = ... and | &,
o i=1

generates 7.

Definition 1. A noncommutatitve sequential test is a sequence of

positive operators X,, X,eo,, 0< X, < 1.

Assume that we have two families of normal states on o, say {ue)sce
and {v;};.4, where ©® and A are arbitrary sets of parameters.

Definition 2. The noncommutative sequential test {X,} will be called
consistent if, for all 8¢ @, pg(X,) converges to 0 and, for all Aed, v, (X))
converges to 1. _

In the classical theory, the necessary and sufficient conditions for
consistency were studied by Kraft [4] who made use of Kakutani’s “distan-
ce” and “inner product” of probability measures. The noncommutative

analogues -of these notions are Bures’ “distance” and “inner product” of
states [1].

Recall that if 4 and v are states on a W* -algebra </, Bures’ “dlstance
and “inner product” between p and v are defined as d(u, v) = inf 1€, —EM
and g(u, v) = sup|(£,, &,)l, respectively, when thé infimum and supremum are
taken over all vectors £,, &, satisfying u = W, V= W in any representation
of o/ as the algebra of operators acting in some Hilbert space H. d and ¢
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satisfy the formula d(u, v)> =2—20(u,v) and the inequality d(u, v)? <

lu—vll < 2d (g, v).

Assume now that @ and A are the sets of parameters with o-fields of
subsets (@) and (A), respectively. Let p and g be probability measures on
(@, (0)) and (4, (A)), respectively. Suppose that pg(X) and v, (X) are measu-
rable functions of & and A for each Xe /. Then

w(X) = [us(X)pd9) and v(X) = [v;(X)q(dd)
] A

-are normed normal states on .

ProposITION 1.-There exists a consistent sequential test {X,} for p-almost
all uy against g-almost all v, if and only if p is orthogonal to v, i.e. if, for some
projector ecof, u(e) =1 and v(e) =

Proof. Suppose that u | v. Making use of the theorem of Kosaki [3],
the lemma of Bures [1] and the methods of Kraft [4], we can easily show
that there exists a consistent sequential test for u against v. Hence
_[ Us(X,) p(d9) converges to 0 and j’vl(X,,)q(dA) converges to 1. Thus, for

some subsequence {X,,k b us(Xy) and v;(X,,) converge almost everywhere to

0 and to 1, respectively. Hence we get the desired test.

On the other hand, if such a test {X,} exists, we can find some subnet
{X,} ultraweakly convergent to some X between 0 and 1, for which u,(X,)
tends to 0 and v, (X,) tends to 1 for almost all § and 4. Hence p(X) =0 and
v(X) =1 and, for some projector e (the spectral projector of X correspon-
ding to the one-point set {0}, u(e) =1 and v(e) =0, which completes the
proof.

- CoRroOLLARY. There exists a consistent test between two countable families
of states if and only if there exists a consistent test between any pair of states
chosen one from each family.

Definition 3. A sequential test X, is called uniformly consistent if the
convergences of uy(X,) to 1 and v,(X,) to O are uniform on A and O,
respectively. ,

As in the classical situation, the existence of uniformly consistent tests
can be characterized in terms of the distance in s, between the convex hulls

_of states belonging to each hypothesis. Denote by C({us}) and C({v;}) the

convex hulls of the sets {y;} and {v,}.

We now prove the noncommutative version of the lemma due to LeCam
and published in [4]:

LeMMA. The existence of a test X, such that

0 inf s () > +sup va(%),
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is necessary and sufficient for the distance in o, between C({ug}) and C({v;})
to be at least e.

Proof. Consider the real Banach space </} of all hermitian states on
&. It is well-known that the adjoint space to o/% is 2" i.e. the real space of
self-adjoint operators of .«7.

Assume that inequality (i) holds for some ¢ and some positive X
belonging to the unit sphere S in <" This inequality is equivalent to ¢ (X)
> &/2 for each ¢ belonging to the set C = C({ug})— C({v;}). Denote by y the
element of S of the form 2X —1. Evidently, ¢(y) > ¢, because ¢ (1) =0. We
know-that | ()| < ||| -|[yll, where the norms are from 7, and ., respecti-
vely. Since |[y|| <1, we have ||¢|| =& for each @eC. Thus the distance
between C({ug}) and C({v,;}), equal to inf||¢]|, is at least e.

«

Suppose now that, for each ¢eC, tﬁe inequality ||¢|| > ¢ holds. Denote
by V the open-sphere of radius & and the center at zero in </ . Consider the
set K = /% of the form K =C+V. It is easy to see that K is an open
convex set in /4 which does not contain zero. By the corollary of the
Hahn-Banach theorem, there exists a ye /" such that (y) > 0 for each y
belonging to K. Evidently, we may assume that |ly|| = 1.

So, we can write (¢+a)(y) >0, where ¢eC and aeV, or, which is
equivalent (because C+V=C—V), @(y) > a(y) for all pcC and all aecV.
Hence

inf @ (y) = supa(y) = ¢llyll = e.
peC aegV

Let X =3y+31. X is a test and inf @(X) > ¢/2, which completes the
peC
proof.

Now we are in a position to prove the following

PROPOSITION 2. There exists a uniformly consistent sequential test for {pug}
against {v,} if and only if sup g,(u, v) converges to 0 (g,(u, v) means here
o(ul,, v| #,)). The supremum is taken over all u belonging to C ({us}) and all
v belonging to C({v;}).

Proof. If g,(u, v) converges to 0 uniformly, then the distance between
the restrictions y.«/, and v|&/, of states u and v to subalgebras o/, converges
uniformly to 2. Hence, for some sequence {e,} of positive numbers, conve-
rging to 0, ‘

inf |y, —v|L,|| Z 2—2e,.

By Lemma, there exists a sequential test {X,} such that

(11) infﬂ& (Xn) 21 —é&,+Supv, (Xn)
’ s A
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Hence inf puy(X,) converges to 1 and supv,(X,) converges to 0.
9 A
On the other hand, if infuy(X,) =2 1—¢,/2 and supv,(X,) < &,/2, then
. 3 A

(ii) holds. ,

The simple use of Lemma gives the proof.

The most important example of the W* -algebra &/ with the sequence of
subalgebras o/, generating . is the infinite tensor product of W* -algebras.
In this case we can define product states and — asymptotically — product
states and consider the existence tests for such states.

Similarly as the consistent test, we can also define and.consider consi-
stent estimates. The _reader will be able to find these considerations in our
next papers.

Remark. Theorems in the paper are the noncommutative analogues of
the corresponding theorems of [4]. The proofs are based on similar ideas
with the use of notions and facts characteristic for the theory of W¥*-
algebras. -
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